СПЕЦИФИКАЦИЯ

диагностической работы по физике для 10-х классов (профильный уровень)

1. Назначение работы – определить уровень освоения обучающимися основной образовательной программы среднего общего образования по предмету «Физика» за курс 10 класса (профильный уровень изучения предмета).

2. Документы, определяющие содержание и параметры диагностической работы

- Приказ Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования»;
- Приказ Министерства просвещения Российской Федерации от 18.05.2023 N 371 «Об утверждении федеральной образовательной программы среднего общего образования»;
- Порядок организации и осуществления образовательной деятельности по основным общеобразовательным программам –образовательным программам начального общего, основного общего и среднего общего образования, утвержденным приказом Министерства просвещения Российской Федерации от 22.03.2021 № 115;
- Приказ Министерства просвещения Российской Федерации от 29.09.2023 N 731 «О внесении изменений в Порядок организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования, утвержденный приказом Министерства просвещения Российской Федерации от 22 марта 2021 г. N 115»;
- Образовательная программа среднего общего образования ГАОУ СО «Гимназия № 1»;
- Приказ Министерства просвещения Российской Федерации от 14.09.2021 г. № 03-1510 «Об организации работы по повышению функциональной грамотности»;
- Универсальные кодификаторы распределенных по классам проверяемых требований к результатам освоения основных образовательных программ базового уровня и элементов содержания среднего общего образования.

3. Структура диагностической работы

В работе представлены задания разных уровней сложности: базового, повышенного и высокого.

Вариант диагностической работы состоит из 26 заданий: 14 заданий с кратким ответом, 10 задания на установление соответствия, 4 задания с развернутым ответом.

Задания базового уровня включены в часть 1 работы (9 заданий). Это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов.

Задания повышенного уровня распределены между частями 1 и 2 диагностической работы: шесть заданий с кратким ответом в части 1, и одно задание с развернутым ответом в части 2. Эти задания направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики.

Три задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух-трех разделов физики, т.е. высокого уровня подготовки.

4. Условия проведения диагностической работы, включая дополнительные материалы и оборудование.

Работа поводиться в бланковой форме. При выполнении диагностической работы используются линейки для построения графиков, электрических схем; непрограммируемый калькулятор, обеспечивающий выполнение арифметических вычислений (сложение, вычитание, умножение, деление, извлечение корня) и вычисление тригонометрических функций (sin, cos, tg, ctg, arcsin, arcos, arctg), а также не осуществляющий функций средства связи, хранилища базы данных и не имеющий доступ к сетям передачи данных (в том числе к сети Интернет)

Все необходимые справочные данные приведены в тексте варианта.

На выполнение всей диагностической работы отводится 180 минут.

Примерное время на выполнение заданий различных частей работы составляет:

- 1) для каждого задания с кратким ответом 2–5 минут;
- 2) для каждого задания с развёрнутым ответом 5-20 минут.

5. Система оценивания заданий и работы в целом

Верно выполнение каждого из заданий базового уровня с кратким ответом оценивается в 1 балл. Верно выполненное задание повышенного уровня оценивается в 2 балла. Задание с развернутым ответом и решением оценивается в соответствии с критериями оценивания. Максимальное количество балов – **44** балла

<u>часть1</u>- **32** балла

часть 2 - **12** баллов

6. Распределение заданий диагностической работы по содержанию, видам умений и способам деятельности .

При разработке содержания контрольных измерительных материалов учитывается необходимость проверки усвоения элементов знаний, представленных в кодификаторе. В диагностической работе контролируются элементы содержания из следующих разделов (тем) курса физики 10 класса

- 1. Механика (кинематика, динамика, законы сохранения в механике).
- 2. Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
- 3. Электродинамика (электрическое поле). 10 класс

7. Проверяемые предметные требования к результатам обучения

- Учитывать границы применения изученных физических моделей (материальная точка, инерциальная система отсчёта, идеальный газ; модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд) при решении физических задач
- Понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов
- Распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики (равномерное и равноускоренное прямолинейное движение, свободное падение тел,

движение по окружности, инерция, взаимодействие тел, колебательное движение, резонанс, волновое движение; диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов, нагревание проводника с током)

- Описывать механическое движение, используя физические величины (координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность); при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами
- Описывать изученные свойства тел и тепловые явления, используя физические величины (давление газа, температура, средняя энергия хаотического движения молекул, средняя квадратическая скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя); при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами
- Описывать изученные свойства вещества (электрические, электрическую проводимость различных сред) и электрические явления (процессы), используя физические величины (электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, разность потенциалов, ЭДС и внутреннее сопротивление источника тока, работа тока, мощность тока); при описании правильно трактовать физический смысл используемых величин, их бозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами
- Анализировать физические процессы и явления, используя физические законы и принципы (закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправности инерциальных систем отсчёта; молекулярно-кинетическая теория строения вещества, газовые законы, первый закон термодинамики; закон сохранения электрического заряда, закон Кулона, закон Ома для участка цепи, закон Ома для полной электрической цепи, закон Джоуля Ленца); при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости
- Решать расчётные задачи с явно заданной физической моделью,используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины

-Решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления

В таблице 2 представлен обобщенный план диагностической работы с распределением заданий по элементам содержания , уровню сложности и планируемым результатам обучения.

Таблица 2 **Обобщенный план диагностический работы**

Позиция	Контролируемый	и план диагн Уровень	Максима	Планируемые результаты
в тексте	элемент содержания	сложности	льный	обучения
	олими обрани	0,10,111100131	балл за	00, 1011111
			выполне	
			ние	
			задания	
	<u>Часть 1</u>		3374	
1	Физический смысл	Б	2	Правильно трактовать
	величин, законов и			физический смысл
	закономерностей			изученных физических
	•			величин, законов и
				закономерностей
2	Графическое	П	2	Использовать графическое
	представление			представление информации
	информации			
3	Кинематика.	Б	1	Применять при описании
	Динамика			физических процессов и
				явлений величины и законы
4	Законы сохранения в	Б	1	Применять при описании
	механике			физических процессов и
				явлений величины и законы
5	Механическое	Б	1	Применять при описании
	равновесие			физических процессов и
	•			явлений величины и законы
6	Анализ физических	П	2	Анализировать физические
	процессов.			процессы (явления),
	Кинематика,			используя основные
	динамика, законы			положения и законы,
	сохранения			изученные в курсе физики
7	Изменение	Б	2	Анализировать физические
	физических величин.			процессы (явления),
	Механика			используя основные
				положения и законы,
				изученные в курсе физики.
				Применять при описании
				физических процессов и
				явлений величины и законы
8	Установление	Б	2	Применять при описании
	соответствия.			физических процессов и
	Механика			явлений величины и законы
9	Основное уравнение	Б	1	Применять при описании

	МКТ. Уравнение			физических процессов и
	Клапейрона —			явлений величины и законы
	Менделеева			
10	Влажность. Работа,	Б	1	Применять при описании
	количество теплоты,			физических процессов и
	внутренняя энергия			явлений величины и законы
11	Первое начало	Б	1	Применять при описании
	термодинамики. КПД			физических процессов и
	тепловых машин.			явлений величины и законы
12	Анализ физических	Б	2	Анализировать физические
	процессов.			процессы (явления),
	Молекулярная			используя основные
	физика.			положения и законы,
	Термодинамика			изученные в курсе физики
13	Изменение	П	2	Анализировать физические
	физических величин			процессы (явления),
	Молекулярная			используя основные
	физика и			положения и законы,
	термодинамика.			изученные в курсе физики.
				Применять при описании
				физических процессов и
				явлений величины и законы
14	Напряжённость и	Б	1	Применять при описании
	потенциал			физических процессов и
	электрического поля			явлений величины и законы
15	Закон Кулона, закон	Б	1	Применять при описании
	сохранения заряда			физических процессов и
				явлений величины и законы
16	Электрическая	Б	1	Применять при описании
	ёмкость.			физических процессов и
				явлений величины и законы
17	Сила тока, закон	Б	1	Применять при описании
	Ома.			физических процессов и
				явлений величины и законы
18	Работа	Б	1	Применять при описании
	электрического тока,			физических процессов и
	мощность, закон			явлений величины и законы
	Джоуля — Ленца			
19	Электрические схемы	Б	1	Анализировать физические
	r			процессы (явления),
				используя основные
				положения и законы,
				изученные в курсе физики.
				Применять при описании
				физических процессов и
				явлений величины и законы
				ADVICTION DOWN INTIDI VI SURCITOI

20	Анализ физических процессов. Электричество	П	2	Анализировать физические процессы (явления), используя основные положения и законы, изученные в курсе физики
21	Изменение физических величин . Электричество	Б	2	Анализировать физические процессы (явления), используя основные положения и законы, изученные в курсе физики
22	Установление соответствия. Электричество	Б	2	Анализировать физические процессы (явления), используя основные положения и законы, изученные в курсе физики. Применять при описании физических процессов и явлений величины и законы
	Часть 2			
23	Качественная задача. Механика. МКТ. Термодинамика. Электродинамика	П	2	Решать качественные задачи, использующие типовые учебные ситуации с явно заданными физическими моделями
24	Молекулярная физика. Термодинамика (расчетная задача высокого уровня)	В	3	Решать расчётные задачи с неявно заданной физической моделью с использованием законов и формул из одногодвух разделов курса физики
25	Электродинамика (расчетная задача высокого уровня)	В	3	Решать расчётные задачи с неявно заданной физической моделью с использованием законов и формул из одногодвух разделов курса физи
26	Механика (расчетная задача высокого уровня с обоснованием)	В	4	Решать расчётные задачи с неявно заданной физической моделью с использованием законов и формул из одногодвух разделов курса физики, обосновывая выбор физической модели для решения задачи

В Приложении 1 представлен демонстрационный вариант диагностической работы.

Демонстрационный вариант диагностической работы по физике для учащихся 10-х классов

Инструкция

В целях обеспечения единых условий для всех участников диагностической работы при проведении и обработке результатов используются унифицированные экзаменационные материалы, которые состоят из КИМ и бланков: бланка регистрации, бланка ответов \mathbb{N}° 1, предназначенного для внесения кратких ответов, бланка ответов \mathbb{N}° 2 (лист 1 и лист 2), дополнительного бланка ответов \mathbb{N}° 2, предназначенных для внесения развернутых ответов.

На выполнение диагностической работы по физике отводится 3 часа (180 минут). Работа состоит из 2 частей, включающих 26 заданий

Часть 1 содержит 22 заданий. При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Часть 2 содержит 4 задания на которые требуется дать развернутый ответ На экзамене по физике разрешено применение линейки для построения графиков, электрических схем; непрограммируемый калькулятор, обеспечивающий выполнение арифметических вычислений (сложение, вычитание, умножение, деление, извлечение корня) и вычисление тригонометрических функций (sin, cos, tg, ctg, arcsin, arcos, arctg), а также не осуществляющий функций средства связи, хранилища базы данных и не имеющий доступ к сетям передачи данных (в том числе к сети Интернет)

Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа. Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у вас останется время. За выполнение различных по сложности заданий дается один или более баллов. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться вам при выполнении работы.

Десятичные приставки

Наименование	Обозначение	Множитель
гига	Γ	109
мега	M	10^6
кило	K	10^3
деци	д	10-1

санти	c	10-2
милли	M	10^{-3}
микро	MK	10 ⁻⁶
нано	Н	10 ⁻⁹
пико	П	10 ⁻¹²

Физические постоянные (константы)

	7.14
число п	$\pi = 3,14$
ускорение свободного падения	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 / \text{kg}^2$
газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_A = 6,02 \cdot 10^{23} \text{ 1/моль}$
скорость света в вакууме	$c = 3.10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = 1/(4\pi\epsilon_0) = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2/\text{K}\pi^2$
диэлектрическая постоянная	$\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/\text{M}$
заряд электрона	$q = 1,6 \cdot 10^{-19} \text{ K}\pi$
масса электрона	$m_e = 9.1 \cdot 10^{-31} \text{kg}$
масса протона	$m_p = 1,67 \cdot 10^{-27 \text{ K}}$
постоянная Планка	$h = 6,62 \cdot 10^{-34}$ Дж·с
радиус Земли	6400 км
масса Земли	5,98·10 ²⁴ кг
постоянная Фарадея	$F = 9,65 \cdot 10^7 \text{ Кл/моль}$
магнитная постоянная	$\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma$ н/м

Соотношение между различными единицами измерения

температура	$0 \text{ K} = -273 {}^{0}\text{C}$
атомная единица массы	1 а.е.м. = 1,66·10 ^{-27 кг}
1 атомная единица массы эквивалентна	931,5 МэВ
1 электронвольт	1 эВ = 1,6⋅10 ⁻¹⁹ Дж

Масса частиц

электрона	$9,1\cdot10^{-31}$ кг ≈ $5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг $\approx 1,007$ а.е.м.
нейтрона	1,675·10 ⁻²⁷ кг ≈ 1,008 а.е.м.

Плотность

воды	1000 кг/м ³
древесины (сосна)	400 кг/м ³
керосина	800 кг/м ³
подсолнечного масла	900 кг/м ³
аллюминия	2700 кг/м ³
железа	7800 кг/м ³
ртути	13 600 кг/м ³

Удельная теплоёмкость

воды	4,2·10 ³ Дж/(кг·К)
льда	2,1·10 ³ Дж/(кг·К)
железа	460 Дж/(кг∙К)
свинца	130 Дж/(кг∙К)
алюминия	900 Дж/(кг∙К)
меди	380 Дж/(кг∙К)
чугуна	500 Дж/(кг•К)

Удельная теплота

парообразования воды	2,3·10 ⁶ Дж/кг
плавления свинца	2,5·10 ⁴ Дж/кг
плавления льда	3,3·10 ⁵ Дж/кг

Нормальные условия:

давление	10 ⁵ Па
температура	0° C

Молярная масса

азота	28·10 ⁻³ кг/моль
аргона	40·10 ⁻³ кг/моль
водорода	2·10 ⁻³ кг/моль
воздуха	29·10 ⁻³ кг/моль

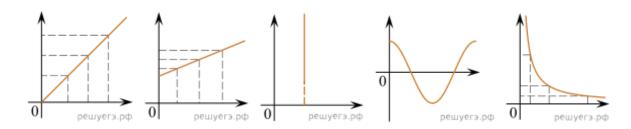
гелия	4 ·10 ⁻³ кг/моль
кислорода	32·10 ⁻³ кг/моль
лития	6·10 ⁻³ кг/моль
молибдена	96·10 ⁻³ кг/моль
неона	20·10 ⁻³ кг/моль
углекислого газа	44·10 ⁻³ кг/моль

Часть 1

Ответы на задания 1–22 запишите в указанном месте в тесте, а затем впишите в бланк ответов №1 справа от номера задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с образцом. Единицы измерения физических величин писать не нужно.

Задание 1

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.


- 1) Силы, с которыми тела действуют друг на друга, лежат на одной прямой, направлены в противоположные стороны, равны по модулю, имеют одну природу.
- 2) Потенциальная энергия тела прямо пропорциональна квадрату скорости движения тела.
- 3) Тепловым движением называют самопроизвольное перемешивание газов или жидкостей.
- 4) Напряжение на концах участка электрической цепи из последовательно соединённых резисторов равно сумме напряжений на каждом резисторе.
- 5) Магнитное поле вокруг проводника с током возникает только в момент изменения силы тока в проводнике.

Задание 2

Даны следующие зависимости величин:

- А) зависимость потенциальной энергии гравитационного взаимодействия от высоты, на которую поднято тело (считать нулевым уровнем потенциальной энергии поверхность Земли);
- Б) зависимость электроёмкости плоского конденсатора от расстояния между пластинами;
- В) зависимость давления идеального газа от температуры при изотермическом процессе.

Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1-5. Для каждой зависимости A-B подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами.

0

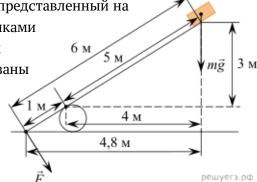
Ответ:

A	Б	В

Задание 3

x, cmМатериальная точка равномерно движется по окружности, центр которой находится в начале О прямоугольной системы координат ХОУ. На рисунке показан график зависимости координаты x этой точки от времени t. Чему равен модуль V скорости этой точки? Ответ выразите в см/с и округлите до целого числа.

Задание 4

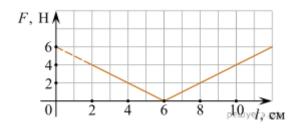

Мальчик бросил камень массой 100 г под углом к горизонту из точки А. На рисунке в некотором масштабе изображена траектория АВС полета камня. Сопротивление воздуха пренебрежимо мало. В точке B траектории модуль скорости камня был равен 8 м/с. Какую кинетическую энергию имел камень в точке C? (Ответ

дайте в джоулях.) Ускорение свободного падения принять равным 10 м/с².

Задание 5

Под действием силы тяжести mg груза и силы F рычаг, представленный на рисунке, находится в равновесии. Расстояния между точками приложения сил и точкой опоры, а также проекции этих расстояний на вертикальную и горизонтальную оси указаны на рисунке.

Если модуль силы F равен 600 H, а груз на плоскость не давит, то каков модуль силы тяжести, действующей на груз? (Ответ дайте в ньютонах.)

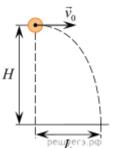


11 м

12 14

Задание 6

Школьник проводит опыт, исследуя зависимость модуля силы упругости пружины от длины пружины. Эта зависимость выражается формулой $F(l) = k|l - l_0|$, где l_0 — длина пружины в недеформированном состоянии. График полученной зависимости приведён на рисунке.


Выберите все утверждения, которые соответствуют результатам опыта.

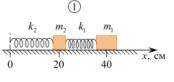
1) Под действием силы, равной 6 Н, пружина разрушается.

- 2) Жёсткость пружины равна 200 Н/м.
- 3) Длина пружины в недеформированном состоянии равна 6 см.
- 4) При деформации, равной 2 см, в пружине возникает сила упругости 2 Н.
- 5) В процессе опыта жесткость пружины сначала уменьшается, а затем увеличивается.

Задание 7

Шарик, брошенный горизонтально с высоты H с начальной скоростью V_0 , за время полёта t пролетел в горизонтальном направлении расстояние L (см. рисунок). Что произойдёт с временем полёта и ускорением шарика, если на той же установке при неизменной начальной скорости шарика увеличить высоту H? (Сопротивлением воздуха пренебречь.)

Для каждой величины определите соответствующий характер её изменения:


- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:

Время полёта	Ускорение шарика	

Задание 8

На рисунке 1 изображены две лёгкие пружины с различными коэффициентами жёсткости ($k_1 = 200 \text{ H/m}$ и $k_2 = 500$ H/м), соединённые с грузами различных масс. Пружины не деформированы. Затем свободный (левый) конец этой конструкции прикрепляют к потолку (см. рисунок 2).

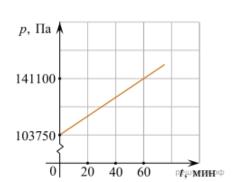
2

Установите соответствие между физическими величинами и их значениями в СИ. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ЗНАЧЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В СИ

A) отношение удлинений верхней и нижней пружин Δl_1 Б) отношение масс грузов m_1

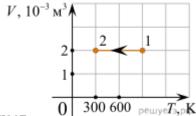

2) 1,25 3) 2,125

4) 2,5

1) 0,8

Задание 9

Два моля идеального газа, находящегося в закрытом сосуде при температуре 300 К, начинают нагревать. График зависимости давления p этого газа от

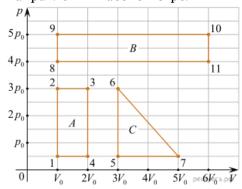

времени t изображён на рисунке. Чему равен объём сосуда, в котором находится газ? Ответ выразите в литрах и округлите до целого числа.

Задание 10

Относительная влажность воздуха в сосуде, закрытом поршнем, равна 30%. Какова будет относительная влажность, если перемещением поршня объём сосуда при неизменной температуре уменьшить в 3 раза? (Ответ дать в процентах.)

Задание 11

На рисунке показан график изменения состояния постоянной массы газа. В этом процессе газ отдал количество теплоты, равное 3 кДж. На сколько уменьшилась внутренняя энергия? Ответ дайте в килоджоулях.

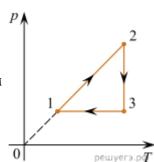


Задание 12

Идеальная тепловая машина с КПД 60% за цикл работы получает от нагревателя 100 Дж. Какую полезную работу машина совершает за цикл? (Ответ дайте в джоулях.)

Задание 13

На pV-диаграмме изображены три циклических процесса A, B и C, совершаемых одним молем идеального одноатомного газа. Обход каждого цикла на диаграмме совершается в направлении часовой стрелки.


Выберите все верные утверждения.

- 1) Максимальная работа совершается газом в цикле B.
- 2) Процесс 6-7 является адиабатическим расширением.
- 3) КПД цикла A равен КПД цикла C.
- 4) Работа, совершаемая газом в процессе 1-2, равна работе, совершаемой газом в процессе 8-9.
- 5) Изменение внутренней энергии в цикле B равно изменению внутренней энергии в цикле A.

Задание 14

На рисунке изображён график циклического процесса, совершаемого одним молем идеального одноатомного газа. Определите, как в процессе перехода газа из состояния 3 в состояние 1 изменяются следующие физические величины: объём газа, внутренняя энергия газа.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

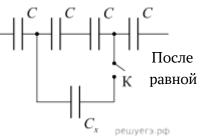
Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:

Объём газа	Внутренняя энергия газа

Задание 15

Шар радиусом 20 см равномерно заряжен электрическим зарядом. В таблице представлены результаты измерений модуля напряжённости E электрического поля от расстояния r до поверхности этого шара. Чему равен модуль заряда шара? (Ответ дать в t нКл.) Коэффициент t принять равным t 9·109 t н·м²/Кл².

r, cm	20	40	60	80	100
<i>E</i> , B/м	225	100	56,25	36	25


Задание 16

Два маленьких одинаковых металлических шарика, имеющие заряды 2 мкКл и 8 мкКл, взаимодействуют в вакууме с силой 0,16 H. Какой будет сила взаимодействия между этими шариками, если их привести в соприкосновение, а потом разнести на прежнее расстояние друг от друга?

Ответ запишите в Ньютонах.

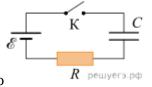
Задание 17

Участок цепи, схема которого изображена на рисунке, до замыкания ключа К имел электрическую ёмкость 3 нФ. замыкания ключа электроёмкость данного участка цепи стала 4 нФ. Чему равна электроёмкость конденсатора C_x (в нФ)?



Задание 18

Через проводник постоянного сечения течёт постоянный ток силой 1 нА. Сколько электронов в среднем проходит через поперечное сечение этого проводника за 0,72 мкс?


Задание 19

Лампочка Л1 имеет сопротивление R, а лампочка Л2 имеет сопротивление 2R. Эти лампочки подключают двумя разными способами, изображёнными на рисунках 1 и 2. Во сколько раз отличаются мощности, выделяющиеся в лампочке Л1 в первом и во втором случае?

Задание20

Конденсатор подключен к источнику тока последовательно с резистором R=20 кОм (см. рисунок). В момент времени t=0 ключ замыкают. В этот момент конденсатор полностью разряжен. Результаты измерений силы тока в цепи, выполненных с точностью ± 1 мкА, представлены в таблице

t, c	0	1	2	3	4	5	6
I, мкA	300	110	40	15	5	2	1

Выберите все верные утверждения о процессах, наблюдаемых в опыте.

- 1) Ток через резистор в процессе наблюдения увеличивается.
- 2) Через 6 с после замыкания ключа конденсатор полностью зарядился.
- 3) ЭДС источника тока составляет 6 В.
- 4) В момент времени t = 3 с напряжение на резисторе равно 0,6 В.
- 5) В момент времени t = 3 с напряжение на конденсаторе равно 5,7 В.

Задание 21

Между пластинами заряженного плоского конденсатора поместили диэлектрик с диэлектрической проницаемостью $\mathcal E$ так, что он полностью заполнил объем между пластинами. Как изменились емкость конденсатора, заряд на пластинах и напряжение между ними, если конденсатор отключен от источника?

ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА

ЕЕ ИЗМЕНЕНИЕ

А) Заряд на пластинах

1) Уменьшится в \mathcal{E} раз

Б) Напряжение между пластинами

2) Останется неизменной

В) Емкость конденсатора

3) Увеличится в ε раз

К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

A	Б	В	

Задание 22

Протон (масса m, заряд e) влетает с некоторой начальной скоростью v_0 в однородное электрическое поле напряжённостью \vec{E} и, двигаясь в направлении силовой линии этого поля, пролетает некоторое расстояние d.

Пренебрегая действием силы тяжести, установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ФОРМУЛА

1)
$$\sqrt{v_0^2 + \frac{2eEd}{m}}$$

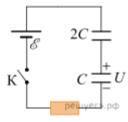
$$\sqrt{v_0^2 - \frac{2eEd}{m}}$$
2)
$$eEd$$
4)
$$- eEd$$

A	Б

Часть 2

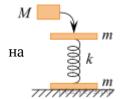
Для записи ответов на задания 23–26 используйте Бланк ответов №2. Запишите сначала номер задания (23, 24 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

Задание 23


В герметичную банку, сделанную из очень тонкой жести и снабженную наверху завинчивающейся крышкой, налили немного воды (заполнив малую часть банки) при комнатной температуре и поставили на газовую плиту, на огонь, не закрывая крышку. Через некоторое время, когда почти вся вода выкипела, банку сняли с огня, сразу же плотно завинтили крышку и облили банку холодной водой. Опишите физические явления, которые происходили на различных этапах этого опыта, а также предскажите и объясните его результат.

Задание 24.

В гладком закреплённом теплоизолированном горизонтальном цилиндре находится 1 моль идеального одноатомного газа (гелия) при температуре T_1 = 200 K, отделённый от окружающей среды — вакуума — теплоизолированным поршнем массой m = 3 кг. Вначале поршень удерживали на месте, а затем придали ему скорость V = 15 м/с, направленную в сторону газа. Чему будет равна среднеквадратичная скорость атомов гелия в момент остановки поршня? Поршень в цилиндре движется без трения.


Задание 25.

Из двух конденсаторов ёмкостями С = 6 мкФ и 2C, резистора, идеального источника с ЭДС $\mathscr E=10$ В и ключа собрали электрическую цепь, схема которой показана на рисунке. Изначально ключ был разомкнут, конденсатор ёмкостью 2C не заряжен, а

конденсатор ёмкостью С заряжен до напряжения $U=\frac{\mathscr{E}}{2}$ и подключён к цепи в полярности, показанной на рисунке. Ключ замыкают и дожидаются окончания перераспределения зарядов в цепи. Какое количество теплоты выделится в резисторе после замыкания ключа?

Задание 26

Пружину, соединенную с двух сторон пластинами массой m, поставили горизонтальную площадку (см. рис.). Затем на верхнюю пластину положили груз массой M = 500 г так, что ось пружины осталась вертикальной. После этого резким ударом в горизонтальном

направлении груз сбросили с пластины. Пренебрегая трением груза о пластину, определите, какой может быть масса пластины m, чтобы нижняя пластина оторвалась от площадки?

Какие законы Вы используете для описания движения пружины и тел? Обоснуйте их применение к данному случаю.